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In this paper we describe a new method for generation of solution adaptive grids based 
on harmonic maps on Riemannian manifolds. The reliability of the method is assured by 
an existence and uniqueness theorem for one-to-one maps between multidimensional 
multiconnected domains. We formulate an adaptive Riemannian metric consistent with 
this theorem. Several examples demonstrating application of the developed procedure are 
provided. Ii” 1991 Academic Press, Inc. 

1. INTR~OUCTI~N 

The grid is an integral part of finite-difference and finite element models. It is 
known that the efficiency of discrete models is greatly enhanced when they are con- 
structed using natural coordinate systems and when a regular pattern of connec- 
tivity between grid nodes is present. These two requirements are satisfied when the 
grid is obtained by coordinate transformation so that the boundaries of the 
modeled domain are represented by constant coordinate lines or surfaces. In addi- 
tion to adapting to the boundaries, the coordinate transformation can be made to 
adapt to important features of the solution, such as singularities and boundary 
layers. Such an adaptation is done either prior to solving the numerical problem on 
the basis of a priori information about the solution or dynamically by adapting to 
the evolving solution. In this paper we are concerned only with the latter type of 
adaptation. 

Among the methods which generate grid by solving partial differential equations, 
two main approaches can be distinguished. The first approach was proposed by 
Godunov and Prokopov in 1972 and is based on reparameterization of Laplace 
grid generator by Winslow [23] to enable grid control. Further development of 
refinement of this approach has been made by Joe Thompson and co-workers [22]. 
Dale Anderson [3] recently proposed a particular form of the source terms in the 
Poisson equations which tend to equidistribute certain weights on the grid. This 
approach seems to be particularly promising for adaptive grid generation. Although 
Godunov and Prokopov formulated their grid equations to ensure existence and 
uniqueness of one-to-one maps, this is generally not possible for Poisson equations. 
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Another extension of Winslow’s method was proposed by Yanenko with co- 
authors in the mid-seventies [24, 151. They formulated a minimization problem by 
linearly combining several functionals that measure desired grid properties. By 
varying the magnitude of the coefficients in this linear combination, different map- 
ping properties are emphasized. It is important to note, that one of the functionals 
in this method is the functional which measures deviation from conformality. The 
corresponding Euler-Lagrange equations for such a functional are Laplacians. In 
cases where the “conformal” functional is not used, the rest of the functionals in the 
combination are often not convex and this leads to Euler-Lagrange equations 
which have non-unique solutions. (Non-uniqueness, of course, does not preclude 
one from using these non-convex functionals for grid generation.) A particular form 
of this approach was shown by Brackbill and Saltzman [S], who used the confor- 
mality functional in combination with the orthogonality and cell size measure 
functionals. Roache and Steinberg [ 181 and Castillo [6] have contributed to 
further understanding and refinement of this technique. 

The variational methods are a natural framework for solution adaptive grids. 
However, the complexity of the Euler-Lagrange equations resulting from the 
Yanenko approach significantly exceeds that of the Poisson equation method. In 
addition, the method requires the use of empirically adjustable coefficients and, in 
general, does not assure one-to-one maps. 

The importance of existence and uniqueness results for one-to-one maps has been 
realized by researchers in numerical grid generation [ 161. Thus the reliability of the 
GodunovThompson grid generating system, which is based on Poisson equations, 
was argued on the basis of this system being “not too far” from the basic grid 
generating system, the Laplace equations, for which such proofs have been 
established [S, p. 5041. The Laplace equations, however, provide no control over 
the grid and hence cannot be used for adaptive grid generation. 

In this paper we present a new adaptive grid method, the reliability of which is 
established by an appropriate theorem (Section 3). The method can be viewed as 
yet another generalization and extension of Winslow’s method. However, unlike the 
methods discussed above, which add terms or functionals to the basic Winslow grid 
generator, the present approach uses a single functional to accomplish the adaptive 
mapping. The critical points of this functional, which is to be defined in Section 3, 
are harmonic maps. In addition to a concise formulation, the harmonic maps have 
another important advantage-an existence and uniqueness theorem for one-to-one 
maps (this is a conjecture in three dimensions). This ensures reliability of the 
harmonic map-based grid generators. 

The following sections provide the motivation for this research (Section 2), intro- 
duce the necessary background including sufficient conditions for existence and 
uniqueness of harmonic maps (Section 3), discuss and illustrate the concepts 
presented in the previous section on simple examples (Section 4) formulate 
adaptive Riemannian metrics (Section 5) show examples of adaptive grids for 
a convection-diffusion equation (Section 6) and summarize the work done 
(Section 7). 
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2. MOTIVATION 

Before embracing the mathematical complexities necessary for a general treat- 
ment of harmonic maps, we first consider an heuristic example to illustrate some of 
the ideas and motivation behind this work. Consider a boundary value problem 

Lu=f‘(x) in D 

lu = $6(x) at aD. 
(1) 

We assume that the solution of (1) is “complicated” when expressed as a function 
of x and hence we seek a new coordinate, z, z = z(x) such that u is not “com- 
plicated” when written in terms of z. We define the function behavior as “com- 
plicated” when li;, $ 1 and as not “complicated” when tiz, + 1, where #(x(z)) = zi(z). 
Using the chain-rule we obtain 

U,,- - tizzy, + ti2,z;. (2) 

By definition, we require ~2,; = (u,, - zi=z,, )/zz 6 1. After some algebra we obtain a 
sufficient condition for li,, = 0 which is given by 

Equation (3) is a one-dimensional harmonic map. The calculation of z = z(x) from 
(3) assures that the solution of (1) in the new coordinates is simple. 

Consider a one-dimensional analog of convection-diffusion equation 

u yx + Ru., = 0 (4) 

with the boundary conditions 

u(0) = 0, u(l)= 1. (5) 

The exact solution of (4))( 5 ) is 

(6) 

When parameter R is large, this problem exhibits a boundary layer of thickness 
0(1/R) at the x= 0 boundary. This is one of the simplest singular perturbation 
problems, since as R + cc the solution approaches a step function. 

We wish now to numerically solve for u as a function of x in the domain X, 
V.ue [0, 11. Since we know that the solution is quite “complicated” when written as 
a function of x, to facilitate the numerical solution we seek a new coordinate 
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system, z, such that u is not “complicated” when expressed as a function of z. Let 
us now transform Eq. (4) to the new coordinates, which gives 

(7) 

with the boundary conditions 

u(z = 1) = 0, u(z = N) = 1, (8) 

where Vz E [ 1, N], N is a natural number greater than 2. 
By inspection, the optimal mesh for this equation is obtained from 

x;;-Rx;=0 (9) 

and the boundary conditions x( 1) = 0 and x(N) = 1: 

x= -~lne-R-N-zepR+z 
R 1-N ’ (10) 

Note that Eq. (9) could have been obtained directly from Eq. (3) by observing that 
u,~,/u, = -R. The solution u is indeed simple as a function of z: 

1-z 
u(z)=- 

1-N’ 

where z = 1, 2, . . . . N. Let us solve Eq. (7) on z numerically. Applying central dif- 
ferences we obtain 

Y I+1 -2y,+yip1=o. (12) 

The solution of (12) with the boundary conditions u(i = 1) = 0 and u(i = N) = 1 is 
given by 

which is exactly the same as (11). Therefore by numerically solving this singular 
perturbation problem on a specially designed grid we have been able to obtain an 
exact solution. 

In general, the ratio u,,/u, depends on x which couples the grid equations 
together with the equations describing the physics. To simplify the problem one 
then calculates grid based on the old solution of the physical problem thus effec- 
tively decoupling the two. In such a case, as the solution of the grid equation 
proceeds, the physical solution should be reinterpolated to new grid locations. 
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3. HARMONIC MAPS: DEFINITIONS AND EXISTENCE THEOREM 

In this section we introduce harmonic maps and state sufficient conditions for 
their existence and uniqueness. A correct presentation of this subject demands 
considerably more involved mathematics than is required elsewhere in this paper. 
The readers who are primarily interested in practical applications of this method 
may wish to refer directly to Section 4, where the main results of this section are 
reiterated, discussed, and illustrated on simple examples. 

The theory of harmonic maps is relatively new. Harmonic maps have been 
defined and named by Fuller [9]. However, until Eells and Sampson’s [7] 
fundamental work, this area of mathematics had not received much study. Since 
that paper, harmonic maps have attracted considerable attention both from mathe- 
maticians and also physicists (e.g., [ 173). The develoment of the theory followed 
two paths: the study of the existence, uniqueness, and regularity (e.g., [20, 12, 141) 
and the applications of harmonic maps to different areas in mathematics (see, for 
example, the proof of the contractibility of Teichmuller space by Jost [ 131). In this 
work we are primarily concerned with the first path. 

Suppose that X and 2 are Riemannian manifolds of dimension n with metric 
tensors gTP and G,, in some local coordinates x” and zn, respectively. If x: 2 -+ X is 
a C ’ map, we define the energy density by 

e(x) = i G”(z) g,&x) g g, (14) 

where the standard summation convention is assumed. The total energy associated 
with the mapping x is then 

E(x) = j e(x) dZ. (15) 
.? 

If x is of class C*, E(x) < co, and x is a critical point of E, then x is called 
harmonic. That is, harmonic maps are critical points of the energy functional, 
where the energy density is defined in terms intrinsic to the geometry of the domain, 
the target manifold, and the map between them. The corresponding Euler- 
Lagrange equations are given by 

(16) 

where G = det(G,) and r$ are Christoffel symbols of the second kind on x. Thus, 
we have obtained a system of partial differential equations, where the principal part 
is a Laplace-Beltrami operator, while the non-linearity is quadratic in the gradient 
of solution. 

Next we formulate sufficient conditions for existence and uniqueness of harmonic 
maps. The theorem shown below, referred to here as the HSY theorem, is due to 
Hamilton [ 111 and Schoen and Yau [19]. 
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HAMILTON-SCHOEN-YAU THEOREM. Let (X,p), (2,~) be two Riemannian 
mantfolds with boundaries 8X, dZ and 4: X + Z be a diffeomorphism. For any map 
f: X+ Z such that flax= bldX we define E(f) =JX /idfll’dX. We say that f is 
harmonic ifit is an extremal of E. 

THEOREM. If the curvature of Z is nonpositive, and aZ is convex (with respect to 
metric v), then there exists a unique harmonic map f: X -+ Z such that f is an 
homotopy equivalent to 4. In other words, one can deform f to 4 by constructing a 
continuous jkmily of maps, g,: X+ Z, t E [0, 11, such that g,(x) = d(x) and 
gl(x) = f(x) and g,(x) = d(x), VX E ax, t E [0, 11. 

The HSY theorem is valid for n-dimensional, multiconnected domains. For 
certain choices of the metrics the theorem reduces to the maximum principle for 
linear elliptic partial differential equations (e.g., [4]). 

4. APPLICATION OF THE HSY THEOREM 

The HSY theorem states sufficient conditions for existence and uniqueness of har- 
monic maps. For further discussion it will be convenient to associate the manifolds 
mentioned in the theorem with the physical and computational domains normally 
used in grid generation. Suppose that X is a given physical domain and Z is a 
constructed (computational or logical) domain; then according to the theorem, an 
Z + X map exists when the following two conditions are satisfied: 

1. The curvature of X is non-positive, and 
2. ax is convex. 

The first condition can be readily satisfied by defining an appropriate metric, for 
example Euclidean, on X. (The Euclidean space is “flat”; i.e., it has zero curvature.) 
If, in addition, the boundary of the physical domain is convex, the Z + X mapping 
can be always accomplished. In cases when 8X is not convex, however, the existence 
and uniqueness of the map is not assured. 

The Z--+X mapping is accomplished by numerically solving Eq. (16). We used 
second-order central differences for the second derivatives. Using the second-order 
central differences for approximation of the first derivative, however, causes 
appearance of oscillating modes for high values of Gk’T&. One way to eliminate 
these modes is to use one-sided (upwind) first-order accurate differences for the first 
derivatives. But accuracy of this approximation is often not sufficient, especially for 
2D and 3D problems where one is often forced to use rather coarse grids. (We 
assume that (16) describes a nearly optimal coordinate transformation and hence 
its accurate solution is important.) A simple remedy in this case is to use a product 
of forward and backward one-sided first-order accurate differences, for example, in 
one dimension x,2 z (xi+, - xi)(xi - xi- ,). The resulting approximation of the non- 
linear term is then second-order accurate. 
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We tried several different approaches to linearize (16). The Picard linearization, 
when the non-linear term is calculated explicitly (e.g., [ 1 ] ), does not work for large 
values of G!+‘T$. We also tried 

where the superscript n denotes the iteration level, and the Newton linearization 

Both of these procedures worked well in our tests for any value of Gk’T$. 
The mapping in the opposite direction, X-+ 2, as accomplished by solving 

(17) 

where g=det(g,) and r$ are Christoffel symbols of the second kind on z. In 
practice, however, Eq. (17) is inverted to solve for xk(z’, z2, z”) which makes the 
resulting equations considerably more complex than the ones used for Z-+X 
mapping. Equation ( 17) yields one-to-one maps provided the non-positive curvature 
and convex boundary are in the computational domain Z. Since Z is obtained by 
construction, both requirements can usually be satisfied. Therefore in general, it is 
more advantageous to formulate an X + Z map, since in such a case a dif- 
feomorphism can always be assured under conditions of the HSY theorem. 

The following examples illustrate the above discussion regarding the direction of 
mapping. Consider Eq. (16) for mapping between Euclidean domains, that is, g, = 
G,, = 6,j, where 6, is the Kronecker delta, 

x,-<+xX,,=0 (18) 

I’<< + Y,, = 0, (19) 

where (x, y) E X and (5, q) E Z. The map shown is Z -+ X and, hence, according to 
the HSY theorem, for the transformation to exist, be unique, and be one-to-one, X 
must have nonpositive curvature and 3X must be convex. The first condition is 
satisfied since we set g, = 6,, which implies zero curvature. Then, if 8X is convex 
we will be able to obtain a grid independently of the shape of aZ. It can be shown, 
that if Eqs. (18) and (19) are discretized using central differences, the above 
statement is valid for any grid density, since the discretized equations satisfy the 
maximum principle. Suppose we map domain Z shown in Fig. la onto a unit 
square, domain X. The resulting grid is shown in Figure 2. 

If, however, 8X is not convex, for example like domain Z shown in Fig. la, a 
solution to Eqs. (18), (19) may not exist. In fact, such a mapping was attempted 
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a. b. 

FIG. 1. Examples of domains with a concave boundary (a) and a ccmvex boundary (b). 

by Amsden and Hirt [2], who mapped a square logical domain onto a domain 
similar to the one shown in Fig. la. In their calculation the grid folded as it did in 
our calculation shown in Fig. 3. 

Consider now a harmonic map in the opposite direction, X-, 2, which is given 
by a solution to Eq. (17). As in the previous example assume Euclidean metric in 
both domains. The resulting system is the same as the one originally proposed by 
Winslow [ 231, 

(20) 

(21) 
- 

FIG. 2. Mapping of domain shown in Fig. la onto domain in Fig. lb using Eqs. (18) and (19). 

581/95/2-I4 
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I I \ i I I I I I 

FIG. 3. Mapping of domain shown in Fig. lb onto domain in Fig. la using Eqs. (18) and (19). 

A map for Eqs. (20), (21) exists and is a diffeomorphism for convex 8Z both when 
(20) and (21) are in differential and in central-difference forms. The usual way to 
solve (20), (21) is, however, to transform them to logical space variables. The trans- 
formation yields the quasilinear system of equations [22] 

g22,x,: - %,2X<, + gll xpq = 0 (22) 

g22 Y<< - &cl2 Y<q + g,, Y,, = 0, (23) 

where g,, = xz + yz, g,, =.x: + yg, and g,, = xgx, + ye y,. Although the solution of 
(22) and (23) should be the same as that of (20) and (21) and, hence, should be 
a diffeomorphism, it is not obvious that any consistent finite-difference form of (22), 
(23) produces a diffeomorphism for any grid density. Our experience, however, has 
shown that (22), (23) are indeed very robust for a wide variety of problems. 

Let us consider an interesting example of using (20) (21) and (22), (23) which 
produces a rather unexpected result. In this example we will attempt to map a 
square physical domain, Fig. lb, onto a computational domain in Fig. la using (20) 
and (21). Except for notation, this is the same case we calculated above using 
Z -+ X mapping the result of which, the folded grid, was shown in Fig. 3. Based on 
this result, we know that Eqs. (20), (21) have no solution either. 
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FIG. 4. Mapping of domain shown in Fig. lb onto domain in Fig. la using (20) and (21). 

There is a difference, however, between these two cases. As we mentioned above, 
the usual practice of calculating X -+ 2 map is to solve the inverse of (20), (21), 
Eqs. (22), (23). Solving (22), (23) we obtain the map shown in Fig. 4. To our sur- 
prise the grid did not fold. The solution to this puzzle turned out to be fairly simple: 
by inverting (20), (21) the problem has been changed from mapping X+ Z to 
Z-+X. This second problem neatly cuts off the domain where the one-to-two map 
occurs. Therefore the right-upper corner of the X domain which previously mapped 
onto outside of Z now has no image inside Z and, hence, is not covered by the grid. 

Finally we will revisit the example from Section 2 and consider it in light of the 
information we learned about harmonic maps. Equation (9) is a one-dimensional 
version of (16) with G,, = 1 and r:, = -R. This mapping is guaranteed by 
the HSY theorem, since in one dimension 8X is convex and X, with metrics 
g,, = ce-2R.x where c is some constant, has a nonpositive curvature. Since 
u, a epRx by Eq. (6), the metric can be written in a more meaningful form, namely 
g,, = c,uz. This result will be of use in the next section where we construct an 
adaptive Riemannian metric. 

5. FORMULATION OF RIEMANNIAN METRICS 

To utilize the harmonic maps apparatus for adaptive grid generation one has to 
define Riemannian metrics for the mapped domains. Such a formulation is the 
subject of this section. For convenience of the discussion, we will differentiate 
between two types of adaptation: geometrical and physical. We term geometrical 
adaptation as the process in which the grid clusters in specified (fixed) geometric 
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locations. The physical adaptation is defined as the usual solution adaptive process 
in which the grid is adaptively modified in response to evolving physical solution. 

To fix the ideas, we first consider a simple problem, where we will attempt to 
generate a grid clustered around a straight vertical line midway in a square physical 
domain, X. We will use an X+ 2 mapping. The logical domain, Z, for this problem 
is a rectangle the size of which is determined by the number of grid nodes selected 
in respective directions. First we want to make sure that the logical domain 
curvature is non-positive. This is readily accomplished by defining, G, = 6,,. 

The HSY theorem places no restrictions on the physical space metric, g,, which 
then can be used for adaptation. Specifically, we want to construct g,, in such a way 
that it “zooms in” in specified locations to provide a higher solution, while it goes 
back to its “unperturbed” state away from the special regions. In addition, we want 
the metric to adapt to the shape of the specified contours, which in this example are 
just straight vertical lines. For the considered example, such a metric is given by 

g1,= 1 +.0x--x0) (24) 

g22 = 1, g12 = 03 (25) 
where x=x0 is the selected line of attraction and f(x - x0) is defined to have a 
maximum when x=x0 and ,f(.x - x0) + 0 as (x-x0) -+ co. An example of such a 
function for (24) and (25) is given by 

(26) 

FIG. 5. Grid attraction to x = 0.5 using the metrics defined by (24), (25), and (26). 



ADAPTIVE GRID GENERATION 461 

where A and B are positive constants controlling the amplitude and the rate of 
decay off( . ). Figure 5 shows a grid obtained using (24), (25), and (26). To preserve 
the one-dimensional character of the problem we used Neumann conditions for 
Eq. (17) on the horizontal boundaries. 

A two-dimensional example is provided by attraction to a circle in the physical 
domain. Consider a rectangular physical domain and a circle of radius R with its 
center at (x,., y,), so that the entire circle is inside the domain. .We want to con- 
struct a Riemannian metric which would expand at the rim of the circle and decay 
to standard Euclidean as the distance from the rim increases. Noting that a circle 
is a straight line in polar coordinates, we can immediately write the expression for 
the metric using the results of the previous example, 

gll =f(p-R)(x-x,)*+(!:-~,.)* 
P2 

(27) 

g22=(x-x,)'+f'(~-R)(~-~,)2 

P2 
(28) 

g *=(x--Xc)(~'-~'~)(f(p-R)-l) 
1 

P2 
(29) 

where p2 = (x - x,)~ + (y - y,.)’ and R is the radius of circle. An example of a grid 
calculated using (29) is shown in Fig. 6. 

FIG. 6. Grid attracted to (x-x,)’ + (y - y,)’ = 0.25’ using the metrics from Eq. (29). 
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These results can be generalized to an arbitrary curve, point, or any combination 
thereof. Suppose that the attraction locations are given by a function F(x) =O, 
(x} = {x1, x2, x’}. For example, if attraction is required to the n separate curves 
F,(X) = 0, where i = 1, 2, ..,, n, then F(x) = F, F2 .. F,,. It then follows that 

(30) 

where f(F) is a function of the distance from a given point to F(x) = 0 such that 
f(F) increases as the distance tends to zero, and goes to zero as the distance 
increases, and the subscript denotes a partial derivative with respect to xi. Thus, the 
adaptive Riemannian metric consists of an Euclidean, S,, and a non-Euclidean part, 
f(F) F,Y,F,,/(VF)2. The non-Euclidean part is in turn a product of the magnification 
factor, f(F), which controls the magnitude of the metrics and the directional factor, 
F,,F,,/(VJJ2, which modifies the magnitude depending on the direction of selected 
contour lines. 

Equation (30) requires a rather expensive calculation of the shortest distance 
from each grid node, x0, to F(x) = 0. This calculation can, however, be readily 
eliminated if we notice that F(x,) is a measure of distance from x0 to F(x). Inciden- 
tally, in both previous examples F(x,) is exactly the shortest distance between x0 
and F(x). Figure 7 shows an example of the grid attracted to a parabola, y = 
3(x - 0.5)2, and hence F= y - 3(x - 0.5)2, while Fig. 8 depicts grid refined around 

FIG. 7. Grid attracted to a parabola, y = 3(x - 0.5)’ using the metrics from Eq. (30) 
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FIG. 8. Grid attracted to a parabola, y = 3(x - 0.5)*, and a straight line, y = x, using the metrics 
from Eq. (30). 

the parabola and a straight line, F= (y- 3(~-0.5)~)(y -x). The grids shown in 
these figures were calculated from Eq. (17) with g, from (30) and G, = 6,. 

The procedure for the geometric adaptation described above can be readily 
extended to the physical adaptation. Suppose one can formulate a scalar function 
which characterizes and monitors the essential features of the physical problem. 
Fortunately, this often can be accomplished, since the evolving solution is usually 
controlled by just a few critical variables. These variables, or some suitable function 
of them, can then be combined into a single scalar function-the characteristic 
function. Recall that the expression for Riemannian metrics (30) adapts the metrics 
to contours of continuously or discretely specified scalar function F(x). Therefore, 
once the characteristic function is defined, the physical metrics are given by the 
same expression as the geometric ones. Examples of the physical adaptation are 
shown in the next section. 

6. NUMERICAL EXAMPLES 

In this section we apply the concepts presented above to numerical solution of 
the convectiondiffusion equation 

Ru,=u,,+u,+a2(1-eR(“-‘))sincry (31) 



464 ARKADY S. DVINSKY 

i 

FIG. 9. Contours of u calculated from Eq. (31). 

with the exact solution given by 

u=(l -eR(r-l) ) sin rxy, (32) 

where R and CI are parameters. The solution of (31) is first calculated on a unit 
square with a uniform mesh. Once the solution is obtained we use it to define a 
characteristic function which is, in turn, employed to form a Riemannian metric 

FIG. 10. Contours of E for solution calculated on the uniform grid. E = 0 at the boundary and E,,, 
is at (x, .p) = (0.9, 0.5). 
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FIG. 11. The adapted grid after the lirst iteration. 

in the physical space. Next, the adaptive grid is obtained from harmonic maps. 
Equation (31) is then solved on the adapted grid and its solution is compared with 
the solution obtained on the uniform grid. 

Equation (31) is solved as follows. First it is transformed to curvilinear coor- 
dinates. Then it is discretized using central differences for second-order derivatives 
and first-order upwind differences for first-order derivatives. The resulting difference 

FIG. 12. Contours of E calculated on the grid shown in Fig, 11, E,,, is at (x, y) = (0.91,0.37). 
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equations are solved using red-black successive overrelaxation (SOR) method with 
Chebyshev acceleration to machine accuracy (6-7 digits on our 32-bit machine). 

We use Eq. (17) to calculate the X+ Z map. To assure the non-positive 
curvature on Z, the metric in the computation domain is assumed Euclidean. As a 
result the non-linear terms in (17) vanish identically to yield 

(33) 

Equation (33) is inverted to computational coordinates and discretized using 
central differences both for the first- and second-order derivatives. 
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FIG. 13. Convergence history for the first example, E,,-panel (a), E,,,-panel (b). 
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r - 
1 

FIG. 14. The adapted grid after the seventh iteration. 

In the solution adaptive process the grid and the physics equations are coupled. 
This often presents a computationally formidable problem which is in practice 
avoided by decoupling these two processes in one way or the other. In the examples 
presented below, we will, however, solve Eqs. (33) and (31) in a coupled manner. 
The coupling will be effected in a “quasi-coupled” fashion where the grid is 
calculated to convergence for each F field, until the next iteration is started; that is, 

I 

FIG. 15. Contours of E calculated on the grid shown in Fig. 14, E,,, is at (u. y) = (0.88,0.85) 
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FIG. 16. Contours of u calculated from Eq. (31) for R = 15 and a = 1.51~ 

1. solve Eq. (31) to convergence on the latest grid, 
2. form the characteristic function from the solution, 
3. solve Eq. (33) to convergence using F defined in Step 2, 
4. repeat starting with Step 1. 

This rather inefficient procedure allows one to see the effects of coupling on the 
adaptive process. The first iteration of this algorithm corresponds to the often-used 

FIG. 17. Contours of E for solution calculated on the uniform grid. E = 0 at the boundary and E,,, 
is at (x, y) = (0.9, 0.5). 
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approximate decoupled procedure, where the grid is calculated on the basis of the 
“old” solution without either recalculation or reinterpolation of that solution to the 
evolving grid node locations. 

To save computer time, we used rather coarse convergence criteria, 
(Ekzi - Ek,,,)/E&, co.05 and (Ezz'- E!&)/E&<0.05, where E~(I[u]~,-u~,l)/ 
(1 - eeR), [u]~ and uii are the analytical and numerical solutions at the grid node 
(i, j), respectively; th e subscripts denote the maximum error and the average error 

FIG. 18. The adapted grid after the first iteration. 

FIG. 19. Contours of E calculated on the grid shown in Fig. 18, E,,, is at (.u, y) = (0.90,0.30). 
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per grid node. In the examples that follow, we used Dirichlet boundary conditions, 
for example, at the left boundary, Fig. 9, .x: = 0, and xf = (j- l)/(N- 1 ), where 
j= 1, 2, . ..) N, N is the number of grid nodes. 

In the first example we solve (31) with R = 15 and 1 = rc. The numerical solution 
calculated on the uniform Cartesian 11 x 11 grid is shown in Fig. 9 and the error is 
shown in Fig. 10. The maximum and average errors for the solution calculated on 
the initial grid (the zeroth iteration) are E,,, = 0.162 and E,, = 0.00533, respec- 
tively. 

In this example, the characteristic function is defined to be the numerical solution 
itself, that is, F,, - u,,, while the attraction function is defined asf(F) = 1 + VF,WF,,. 
The adaptive grid after the first iteration is shown in Fig. 11. The maximum and 

0.000 1 
0 1 2 3 4 5 
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0.150- 
c 

o.loo-~\ 0.125 - 

0.075 -- 

0 1 2 3 4 5 

ITERATIONS 

FIG. 20. Convergence history for the second example: &,-panel (a); E,,,-panel (b). 
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FOG. 21. The adapted grid after the sixth iteration. 

average errors for the solution calculated on this grid are I?,,,,, = 0.0791 and 
E,, = 0.00314, respectively, while the error contours are displayed in Fig. 12. 
Although we used 11 contours in all figures, sometimes less than 11 contours are 
visible, which indicates that either maximum and/or minimum coincide with the 
boundary or the maximum and/or minimum contour is just a single point. 

The maximum and average errors for the subsequent iterations are shown in 

FIG. 22. Contours of E calculated on the grid shown in Fig. 21, E,,, is at (x, y) = (0.84, 0.30). 
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I --- 

FIG. 23. Contours of Vu. Vu on the uniform grid, 26 contours are displayed. 

Fig. 13. The convergence criteria we stated above were satisfied in the sixths 
iteration. The corresponding grid is shown in Fig. 14 and the error in Fig. 15. 

For the next example, we will change c( to LX= 1.571. The corresponding solution 
is shown in Fig. 16 and the solution error on the uniform grid in Fig. 17. The 
adaptive grid after the first iteration is shown in Fig. 18. The maximum and 
average errors for the solution calculated on the initial grid are E,,, =0.141 

FIG. 24. The adapted grid after the first iteration. 
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FIG. 25. Contours of E calculated on the grid shown in Fig. 24, E,,, is at (x, v) = (0.91,0.36). 
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FIG. 27. The adapted grid after the twelfth iteration. 

and E,, = 0.00404, while after the first iteration E,,, = 0.0857 and E,, = 0.00306, 
respectively. The error contours for the first iteration are displayed in Fig. 19. 

The solution was considered converged after live iterations. The convergence 
history is shown in Fig. 20. The final grid and the solution error distribution are 
shown in Figs. 21 and 22, respectively. 

In the last example we make several changes. First of all we change the charac- 
teristic function to F=Vu .Vu. We also modify the attraction function f( .) to 

FIG. 28. Contours of E calculated on the grid shown in Fig. 27, E,,, is at (x, y) = (0.87,0.83). 
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f(F) = 1 + F/Fav + VF/VF,,. With these changes we solve again the problem defined 
in the first example. The contours of F are shown in Fig. 23. The grid after the first 
iteration and the corresponding error contours are shown in Figs. 24 and 25. In this 
example the convergence criteria were satislied in the eighth iteration. However, 
since in this iteration E,,, increased, we computed a few more iterations to 
evaluate the trend. The convergence criteria were met again in the eleventh 
iteration. The convergence history is shown in Fig. 26. The grid and the error after 
the eleventh iteration are depicted in Figs. 27 and 28. 

The examples shown in this section illustrate how the concepts presented in this 
paper can be applied to generating adaptive grids for a model diffusion-convection 
equation. Using simple, common-sense definitions for the characteristic and 
attraction function, we obtained grids which helped to reduce the error in the 
maximum norm by a factor of live. No adjustable parameters or coefficients have 
been used in these definitions. 

7. CONCLUSIONS 

In this paper we described a new framework for adaptive grid generation based 
on the principles of differential geometry. In particular we have utilized the 
apparatus of harmonic maps for our construction. The described method favorably 
compares with previously proposed methods in terms of compactness of the 
governing equations and reliability. The feasibility of the proposed approach was 
established by formulating adaptive Riemannian metrics in mapped domains and 
actually performing the numerical mapping. In addition, we investigated the 
question of existence and uniqueness of one-to-one harmonic maps and formulated 
sufficient conditions for our application using results by Hamilton [ 111 and Schoen 
and Yau [19]. 
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